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Abstract

Forced vibration of a rectangular plate excited by displacement boundary conditions is investigated. The
system of boundary conditions is decomposed into two fundamental types of sub-systems, which involves
only one side or one corner. The necessary conditions for the solutions to be of classical sense are discussed.
The transformation is designed to convert the problems to those of forced vibration by body forces with
homogeneous boundary conditions. The closed-form solutions are derived for these two types of problems,
using Fourier series. Additional conditions are proposed to the boundary functions so that the
differentiated series converges uniformly. And consequently, the solutions are verified to satisfy the
differential equations in a classical sense with continuous derivatives.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The forced vibration due to impact, traveling or transient loadings has important applications
in structural analysis, and is often used as examples in the textbooks [1–6]. Besides the vibration
excited by the body force, the forced vibration driven by time-dependent boundary conditions
has attracted many researchers. Closed-form solutions are of particular interest. For example,
the axial vibration of a rod is studied in Refs. [7–9]. The beam bending problems can be found in
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Refs. [10–17]. The membrane deflection problems and plate bending problems are reported
in Refs. [18,19] and [20–22], respectively.
Several approaches have been developed for solving the forced vibration with time-dependent

boundary conditions. The time-dependent boundary value problems can be treated by using
Laplace transform, see Ref. [10] for example. If the functions involved are of simple form, the
closed-form transformation is possible. It is however not always easy to invert the solution of the
transformed system in a closed form. On the other hand, a general transform is proposed
in Mindlin and Goodman [11] to convert a class of vibration systems with time-dependent
boundary conditions to a forced-vibration system by body force with homogeneous boundary
conditions. Then the classical approach of separation of variables is applied to obtain a series
solution in terms of superposition of eigenfunctions. Example of Bernoulli–Euler beam is
illustrated there. The Mindlin–Goodman method has been extended to various types of
applications, e.g., rod [7,9], beam [11,15–17], membrane [19], and plate [21,22]. Included are
also the non-uniform beam [15,16] and plate [22]. Another approach is studied by Williams [23],
which introduces an auxiliary quasi-static problem, and transforms the system to one in the
same form of that resulting from Mindlin–Goodman method. Applications of Williams method
can be found, e.g., in Refs. [8,9] for rod, [12] for beam, [18] for membrane and [20] for
plate. Improvement of Mindlin–Goodman method and Williams method is discussed in
Refs. [9,24]. Besides these methods, a special transformation is investigated in Refs. [13,14].
The transform is designed to let the homogeneous system remain homogeneous, with
homogeneous boundary conditions and non-homogeneous initial conditions. With only special
examples shown however, the application of the method to a general case might still be
a challenge.
It is commented in Ref. [9] that the displacement by Williams method may converge faster than

Mindlin–Goodman method. The displacement obtained in series form is expected to be
differentiated term by term (twice in time, two or four times in space) to satisfy the partial
differential equations. It is however a challenging task to assure the needed convergence of the
differentiated series and the solution to be of classical sense with continuous derivatives. Although
the expression for stress (first derivative) or even the shear force of the beam (third derivative) [10]
is discussed in the literature sometimes, the solution is seldom rigorously verified in the classical
sense. As a matter of fact, to assure the continuous derivatives by differentiating the series,
additional requirements need to be satisfied by the transformation. An improvement from
Mindlin–Goodman method is recently reported in Ref. [25] to construct the closed-form solutions
for rod and beam that satisfy the differential equations in the classical sense with continuous
derivatives. Certain homogeneous boundary conditions are imposed in Ref. [25] on the transform
function and the transformed body force. A similar requirement on the body force term after
transformation is studied in Ref. [9]. In addition, certain consistency conditions need to be
imposed on the boundary functions, so that the differential equations are satisfied at t ¼ 0, at
the boundary.
This paper is to develop an approach, as an extension of Ref. [25], for solving forced vibration

of a type of a rectangular plate driven by the displacement boundary conditions. The system of
general boundary conditions is decomposed into two fundamental types of sub-systems, a side
type involving only one side and a corner type involving only one corner and the two neighboring
sides. For each of the sub-systems, a transform is designed to convert the system to a forced
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vibration excited by body forces with homogeneous boundary conditions. Then the separation of
variables is applied and the Fourier series with a Duhamel’s integral form the solution. To
guarantee that the solutions satisfy the equations in a classical sense, the data must satisfy certain
conditions (necessary), consistently at time ¼ 0 at the boundary, and compatible at the corners.
With additional conditions on the data (sufficient), the constructed solutions are verified in the
classical sense with continuous derivatives, by using theories of Fourier series, particularly the
properties of Fourier coefficients.
In what follows, Section 2 describes the decomposition of displacement boundary

conditions into a side type and a corner type. Sections 3 and 4 develop the closed-form solutions
for these two types of systems respectively and verify the solutions in the classical sense.
Section 5 gives an example of side-type system, followed by the concluding remarks in
Section 6.
Through the text, the discussions are for the solutions in the classical sense, which has

continuous second temporal derivatives and fourth spatial derivatives that appear in the
differential equations on a closed rectangular domain. The following traditional notations are
used for derivatives with respect to time and space variables, for example,

€uðx; tÞ ¼ q2u=qt2; ut4ðx; tÞ ¼ q4u=qt4; . . . ,

u00ðx; tÞ ¼ q2u=qx2; uð4Þðx; tÞ ¼ ux4ðx; tÞ ¼ q4u=qx4; . . . .
2. Forced vibration of a rectangular plate by displacement boundary conditions

Consider a general case of forced vibration driven by displacement boundary conditions

rh €wþDr4wðx; y; tÞ ¼ 0,

wð0; y; tÞ ¼ h1ðy; tÞ; wx2ð0; y; tÞ ¼ 0,

wða; y; tÞ ¼ h2ðy; tÞ; wx2ða; y; tÞ ¼ 0,

wðx; 0; tÞ ¼ g1ðx; tÞ; wy2ðx; 0; tÞ ¼ 0,

wðx; b; tÞ ¼ g2ðx; tÞ; wy2ðx; b; tÞ ¼ 0,

wðx; y; 0Þ ¼ 0,

_wðx; y; 0Þ ¼ 0. ð1Þ

By superposition, the cases of non-zero initial conditions or body forces can be solved
separately with homogeneous boundary conditions using Fourier series.
Obviously, functions ga and ha (a ¼ 1; 2) should be compatible at the corners

g1ð0; tÞ ¼ h1ð0; tÞ ¼ l1ðtÞ,

g1ða; tÞ ¼ h2ð0; tÞ ¼ l2ðtÞ,

g2ða; tÞ ¼ h2ðb; tÞ ¼ l3ðtÞ,

g2ð0; tÞ ¼ h1ðb; tÞ ¼ l4ðtÞ.
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Fig. 1. Displacement at the boundary of a plate.
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Fig. 2. Decomposition of displacement boundary conditions: Left—Type A; Right—Type B.
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The distribution of the boundary conditions is depicted in Fig. 1. Decomposition is essential
now for this complex system. Take one side: x 2 ½0; a� and y ¼ b as example. If we define

x2ðx; tÞ ¼ l4ðtÞx21ðxÞ þ l3ðtÞx22ðxÞ,

x21ð0Þ ¼ 1; x21ðaÞ ¼ 0; x22ð0Þ ¼ 0; x22ðaÞ ¼ 1,

g2ðx; tÞ ¼ G2ðx; tÞ þ x2ðx; tÞ.

Then function G2ðx; tÞ will vanish at both ends of this side. l4ðtÞx21ðxÞ and l3ðtÞx22ðxÞ contribute to
the corners ð0; b) and (a; bÞ, respectively. Thus the system of displacement boundary conditions can be
decomposed into two types of sub-systems, the side-type (A) and the corner-type (B). Each of them can
be further decomposed into four sub-systems, involving one side or one corner only, depicted in Fig. 2.
The following development devotes to the approaches solving these two types of problems.
3. Solution of sub-system with Type A boundary conditions

Consider the sub-system with the side-type boundary conditions, for y ¼ b, x 2 ½0; a�

rh €wþDr4wðx; y; tÞ ¼ 0,

wð0; y; tÞ ¼ 0; wx2ð0; y; tÞ ¼ 0,

wða; y; tÞ ¼ 0; wx2ða; y; tÞ ¼ 0,

wðx; 0; tÞ ¼ 0; wy2ðx; 0; tÞ ¼ 0,

wðx; b; tÞ ¼ gðx; tÞ; wy2ðx; b; tÞ ¼ 0,

wðx; y; 0Þ ¼ 0,

_wðx; y; 0Þ ¼ 0. ð2Þ
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The cases studied in Refs. [20–22] have the Type A boundary conditions. Continuity of w, a
solution in the classical sense, at y ¼ b requires that €g is continuous and the following consistency
conditions at t ¼ 0 are satisfied

gðx; 0Þ ¼ _gðx; 0Þ ¼ €gðx; 0Þ ¼ 0. (3)

The first two equations are due to the zero initial conditions defined in Eq. (2). The third one is
due to the differential equation at t ¼ 0 and r4wðx; b; 0Þ ¼ 0, which is from the differentiation of
wðx; y; 0Þ ¼ 0 at y ¼ b. Furthermore, the continuity of w at the corner points requires that gx4 is
continuous and the following compatibility conditions at (0, b) and (a, b) are satisfied:

gð0; tÞ ¼ gða; tÞ ¼ 0; g00ð0; tÞ ¼ g00ða; tÞ ¼ 0. (4)

These are due to the second and third equations of Eq. (2). The t- and y-derivatives of
wð0; y; tÞ ¼ 0 lead to €wð0; y; tÞ ¼ wy2ð0; y; tÞ ¼ wy4ð0; y; tÞ ¼ 0. Meanwhile, wx2ð0; y; tÞ ¼ 0 gives
wx2y2ð0; y; tÞ ¼ 0. Then wx4ð0; y; tÞ ¼ 0 results from the differential equation at ð0; y; tÞ. In the same
way, we have wx4ða; y; tÞ ¼ 0. Hence, at y ¼ b,

gð4Þð0; tÞ ¼ gð4Þða; tÞ ¼ 0. (5)

Note that Eqs. (3)–(5) are the necessary conditions for system (2) to have a solution in the
classical sense. This is an extension form [25] for the rod and beam problems. This type of
requirement is however not fully discussed in the publications.
With Eq. (4), function g(x, t) can be viewed as periodic and have Fourier series over the basis

fsin amx; m ¼ 1; 2; . . .g; am ¼ mp=a ¼ OðmÞ. (6)

This suggests an x expansion for w along with g

gðx; tÞ ¼
X

m

gmðtÞ sin amx; gmðtÞ ¼
2

a

Z a

0

gðx; tÞ sin amxdx,

wðx; y; tÞ ¼
X

m

wmðy; tÞ sin amx.

For each m, it results in a reduced system of equations in y and t,

rh €wm þDðwm;y4 � 2a2mwm;y2 þ a4mwmÞ ¼ 0,

wmð0; tÞ ¼ 0; wm;y2ð0; tÞ ¼ 0,

wmðb; tÞ ¼ gmðtÞ; wm;y2ðb; tÞ ¼ 0,

wmðy; 0Þ ¼ 0,

_wmðy; 0Þ ¼ 0.

A transform is introduced

wmðy; tÞ ¼ pmðy; tÞ þ vmðy; tÞ,

qmðy; tÞ ¼ �ðrh €pm þDðpm;y4 � 2a2mpm;y2 þ a4mpmÞÞ. ð7Þ
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Let pm satisfy the following conditions:

pmð0; tÞ ¼ 0; p00mð0; tÞ ¼ 0,

pmðb; tÞ ¼ gmðtÞ; p00mðb; tÞ ¼ 0. ð8Þ

This yields a system of vm,

rh€vm þDðvm;y4 � 2a2mvm;y2 þ a4mvmÞ ¼ qm,

vmð0; tÞ ¼ 0; vm;y2ð0; tÞ ¼ 0,

vmðb; tÞ ¼ 0; vm;y2ðb; tÞ ¼ 0,

vmðy; 0Þ ¼ �pmðy; 0Þ,

_vmðy; 0Þ ¼ � _pmðy; 0Þ. ð9Þ

A Fourier series solution vm can be tried, though not the only way, over the basis

fsin bny; n ¼ 1; 2; . . .g; bn ¼ np=b ¼ OðnÞ, (10)

qmðy; tÞ ¼
X

n

qmnðtÞ sin bny,

jmðyÞ ¼
X

n

jmn sin bny,

cmðyÞ ¼
X

n

cmn sin bny,

vmðy; tÞ ¼
X

n

vmnðtÞ sin bny. ð11Þ

Using this approach, additional conditions are proposed

qmð0; tÞ ¼ 0; qmðb; tÞ ¼ 0. (12)

This is required by the end values of the series. Similar requirement is discussed in Ref. [9]. For
the six conditions in Eqs. (8) and (12), a six-term polynomial (5th-degree in y) is suggested, as an
extension of the approach developed in Ref. [25] for the rod and beam problems

pmðx; tÞ ¼ C0ðtÞ þ C1ðtÞyþ C2ðtÞy
2 þ C3ðtÞy

3 þ C4ðtÞy
4 þ C5ðtÞy

5.

The answer is straightforward,

pmðy; tÞ ¼
y

b
gmðtÞ þ

1

D
FmðtÞzðy; bÞ, (13)

qmðy; tÞ ¼ 2a2mFmðtÞz
00
ðy; bÞ � ða4mFmðtÞ þD�1rh €FmðtÞÞzðy; bÞ, (14)
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where

FmðtÞ ¼ Da4mgmðtÞ þ rh €gmðtÞ, (15)

zðy; bÞ ¼
b4

360
�7

y

b
þ 10

y

b

� �3
� 3

y

b

� �5� �
,

zð0; bÞ ¼ zðb; bÞ ¼ z00ð0; bÞ ¼ z00ðb; bÞ ¼ 0,

zð4Þðy; bÞ ¼ �y=b. ð16Þ

Straight application of Mindlin–Goodman method or Williams method will yield

pmðy; tÞ ¼ gmðtÞy=b, (130)

qmðy; tÞ ¼ �ðrh €gmðtÞ þDa4mgmðtÞÞy=b, (140)

satisfying Eq. (8), but not Eq. (12) at y ¼ b. The Fourier series of qm in Eq. (11) takes zero value at
the end point y ¼ b. If the derivatives are taken from differentiation of the series, the solution is
not expected to satisfy the differential equation (9) at y ¼ b. This discontinuity will at least affect a
small zone near the boundary.
From Eqs. (13), (15) and (3), the initial conditions are pmðy; 0Þ ¼ 0 and _pmðy; 0Þ ¼ D�1rh

_ _ _gð0Þ
zðy; bÞ. Using Eq. (11), system (9) is now reduced to a set of separated second-order ODE sub-
systems

rh€vmn þDða4n þ 2a2mb
2
n þ b4nÞvmn ¼ qmn,

vmnð0Þ ¼ 0,

_vmnð0Þ ¼ � _pmnð0Þ.

The solution is in the standard form with a Duhamel’s integral

vmnðtÞ ¼ �
_pmnð0Þ

omn

sin omntþ
1

rhomn

Z t

0

qmnðtÞ sin omnðt� tÞdt,

omn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D=rh

p
ða2m þ b2nÞ ¼ Oðm2 þ n2Þ. ð17Þ

With Eqs. (13)–(16), the Fourier coefficients are

_pmnð0Þ ¼ D�1rh _ _ _gmð0Þzn,

qmnðtÞ ¼ 2a2mFmðtÞz1n � ða
4
mFmðtÞ þD�1rh €FmðtÞÞzn, ð18Þ

where

zn ¼ ð�1Þ
n 2

bb5n
and z1n ¼ ð�1Þ

n�1 2

bb3n
(19)

are the Fourier coefficients of zðyÞ and z1ðyÞ ¼ z00ðyÞ ¼ b2=6ðy=b� ðy=bÞ3Þ, respectively. Finally,
the solution is formed

wðx; y; tÞ ¼
X

m

ðpmðy; tÞ þ
X

n

vmnðtÞ sin bnyÞ sin amx. (20)



ARTICLE IN PRESS

S.R. Wu / Journal of Sound and Vibration 291 (2006) 1104–1121 1111
The next step is to verify the convergence conditions for the series so that the equation is
satisfied in the classical sense. A formal differentiation yields

rh €wðx; y; tÞ þDr4wðx; y; tÞ

¼
X

m

ðrh €pmðy; tÞ þDða4mpm � 2a2mp00m þ ðpmÞy4Þ sin amx

þ
X

m

X
n

ðrh€vmnðtÞ þDða2m þ b2nÞ
2vmnðtÞÞ sin bny

 !
sin amx. ð21Þ

The first summation of Eq. (21) has a dominant series, in view of Eqs. (13)–(16),

S1 ¼
X

m

ðj €pmðy; tÞj þ ja
4
mpmj þ ja

2
mp00mj þ jp

ð4Þ
m jÞ

pC
X

m

ðj €gmj þ ja
4
m €gmj þ jðgt4Þmj þ a4mðjgmj þ ja

4
mgmj þ j €gmjÞ þ a2mðja

4
mgmj þ j €gmjÞÞ.

Assume now, in addition to Eqs. (4) and (5) that

q10g=qx9qt; q9g=qx7qt2; q8g=qx5qt3; q7g=qx3qt4 are continuous; (22)

gð6Þð0; tÞ ¼ gð6Þða; tÞ ¼ gð8Þð0; tÞ ¼ gð8Þða; tÞ ¼ 0. (23)

According to the theory of Fourier series [26], in particular, the properties of Fourier
coefficients

S1pC
X

m

ðj €gmj þ jð €gx4Þmj þ jðgt4Þmj þ jðgx4Þmj þ jðgx8Þmj þ jðgx6Þmj þ j €g
00
mjÞÞo1.

The terms involved above are all the Fourier coefficients of the corresponding derivative
functions of g. The estimate of Fourier coefficients, used above to bound S1, is proved for
periodic functions. The proposed conditions (4, 5, 22, 23) assure that the corresponding
functions can be treated as periodic functions. See Refs. [27–30] for more discussions on Fourier
series.
For the second summation of Eq. (21), with vmnðtÞ of Eq. (17),

€vmnðtÞ ¼ omn _pmnð0Þ sin omntþ qmnðtÞ=rh� omn

Z t

0

qmnðtÞ sin omnðt� tÞdt=rh.

Several items contain the factor am ¼ OðmÞ, via Eqs. (14) and (15). The highest power of factor
am in these items is 10. It can be reduced to 8, after integration by parts with respect to t, for Fm

contained in qmn,

�omn

Z t

0

FmðtÞ sin omnðt� tÞdt ¼ FmðtÞ � Fmð0Þ cos omnðtÞ �

Z t

0

_FmðtÞ cos omnðt� tÞdt.
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Note that Fmð0Þ ¼ 0, by Eqs. (15) and (3). Hence, a dominant series for the second summation
in Eq. (21) is found

S2 ¼
X

m

X
n

ðjomn _pmð0Þj þ jqmnðtÞj þ ðja
2
mz1nj þ ja

4
mznjÞðjFmðtÞj þ

Z
ðj _FmðtÞjdtÞ

þ omnzn

Z
j €Fmjdt

pC
X

m

X
n

ðjomn
_ _ _gmð0Þznj þ ðja

2
mz1nj þ ja

4
mznjÞða

4
mjgmj þ j €gmj þ a4mj _gmj þ j

_ _ _gmjÞ

þ jomnznjða
4
mj €gmj þ jðq

4g=qt4ÞmjÞÞ.

By Eq. (19) and omn ¼ Oðm2 þ n2Þ, the summation over n for all the terms are uniformly
convergent. Then using the property of Fourier series with am ¼ OðmÞ,

S2pC
X

m

ðja2m

_ _ _gmð0Þj þ a4mða
4
mðjgmj þ j _gmjÞ þ j €gmj þ j

_ _ _gmjÞ

þ a2mða
4
mj €gmj þ jðq

4g=qt4ÞmjÞÞ

pC
X

m

ðjð

_ _ _gx2Þmð0Þj þ ðjðgx8Þmj þ jð _gx8Þmj þ jð €gx4Þmj þ jð

_ _ _gx4ÞmjÞ

þ ðjð €gx6Þmj þ jðq
6g=qt4qx2ÞmjÞÞ

o1.

Thus the series are uniformly convergent under the given assumptions, the derivatives are valid,
and the solution is verified in the classical sense, summarized in the following.
Conclusion 1—solution of Type A problem (2), in case (23) is satisfied. The consistency conditions

(3) and the compatibility conditions (4) and (5) with continuous gx4 and €g are the necessary
conditions for Eq. (2) to have a classical solution. If in addition, assumptions (22) and (23) hold, then
a closed-form solution of Eq. (2), in the classical sense, can be constructed by using Eq. (20) with pm

defined in Eq. (13) with Eqs. (15) and (16), and vm defined in Eq. (17) with Eqs. (18) and (19).
It is worth noting that if Eqs. (130) and (140) are used from a straight application of

Mindlin–Goodman method or Williams method, the Fourier coefficients of y/b are of the order of
O(n�1) only. The uniform convergence of derivative series will be hard.
Note that assumption (23) seems to be more than what could be naturally expected. However,

the following decomposition is possible:

gðx; tÞ ¼ ~gðx; tÞ þ x1ðx; tÞ þ x2ðx; tÞ,

xð2iÞ
1 ð0; tÞ ¼ 0; xð2iÞ

1 ða; tÞ ¼ gð2iÞða; tÞ,

xð2iÞ
2 ð0; tÞ ¼ gð2iÞð0; tÞ; xð2iÞ

2 ða; tÞ ¼ 0,

i ¼ 0; 1; 2; 3; 4.

The functions x1ðx; tÞ and x2ðx; tÞ satisfying the above 10 conditions can be found, e.g., in a form
of ninth-degree polynomials in x with the coefficients as functions of t. For example,

x1ðx; tÞ ¼ C1ðtÞ
x

a
þ C3ðtÞ

x

a

� �3
þ C5ðtÞ

x

a

� �5
þ C7ðtÞ

x

a

� �7
þ C9ðtÞ

x

a

� �9
. (24)
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The five conditions at x ¼ 0 are satisfied automatically. The other five conditions, at x ¼ a,
form a linear system with an upper triangular matrix. The solution is unique. Then ~gðx; tÞ satisfies
conditions (4), (5) and (23). System (2) with function ~gðx; tÞ in the place of gðx; tÞ can be solved as
summarized in Conclusion 1.
Then, consider system (2) with the polynomial form x1ðx; tÞ of Eq. (24) in the place of g(x, t). In

fact, Eqs. (4) and (5) are satisfied by x1ðx; tÞ defined in this way,

xð2iÞ
1 ða; tÞ ¼ gð2iÞða; tÞ ¼ 0; i ¼ 0; 1; 2. (25)

The consistency condition (3) implies

Cjð0Þ ¼ _Cjð0Þ ¼ €Cjð0Þ ¼ 0; j ¼ 1; 3; 5; 7; 9. (26)

A transform can be devised

wðx; y; tÞ ¼ pðx; y; tÞ þ vðx; y; tÞ,

qðx; y; tÞ ¼ �ðrh €pþDr4pÞ. ð27Þ

Let p and q satisfy the following boundary conditions, as an extension of the approach of Ref.
[25] to the two-dimensional problem:

pð0; y; tÞ ¼ 0; px2ð0; y; tÞ ¼ 0,

pða; y; tÞ ¼ 0; px2ða; y; tÞ ¼ 0,

pðx; 0; tÞ ¼ 0; py2ðx; 0; tÞ ¼ 0,

pðx; b; tÞ ¼ x1ðx; tÞ; py2ðx; b; tÞ ¼ 0,

qð0; y; tÞ ¼ 0; qða; y; tÞ ¼ 0; qðx; 0; tÞ ¼ 0; qðx; b; tÞ ¼ 0. ð28Þ

A polynomial form is chosen,

pðx; y; tÞ ¼ D11
xy

ab
þD13

x

a

y

b

� �3
þD33

xy

ab

� �3
þD31

x

a

� �3 y

b
þ � � �

¼
Xk

i;j¼1

Dð2i�1Þð2j�1Þ
x

a

� �2i�1 y

b

� �2j�1

. ð29Þ

The even order terms are purposely left out so that the conditions at x ¼ 0 and y ¼ 0 are
satisfied automatically. Thus there are six equations left for p and q. At the boundary x ¼ a,
pða; y; tÞ is a polynomial in y. If p is up to the degree of 2k � 1 in y, there are k terms in y. It is the
same situation for x components at y ¼ b. So there are a total of 6k equations. On the other hand,
the total number of parameters Dij for use is

Pk
i¼1ð2i � 1Þ ¼ k2. A good match is k ¼ 6. That

means an 11th-degree (in x and y) polynomial for p. These 36 equations form a linear system with
constant coefficients. The right-hand side is composed of gð2iÞða; tÞ, which form the coefficients of
x1ðx; tÞ, and their time derivatives. A solution should be available. Thus, the auxiliary system of v
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satisfies all the homogeneous boundary conditions:

rh€vþDr4vðx; y; tÞ ¼ qðx; y; tÞ,

vð0; y; tÞ ¼ 0; vx2ð0; y; tÞ ¼ 0,

vða; y; tÞ ¼ 0; vx2ða; y; tÞ ¼ 0,

vðx; 0; tÞ ¼ 0; vy2ðx; 0; tÞ ¼ 0,

vðx; b; tÞ ¼ 0; vy2ðx; b; tÞ ¼ 0,

vðx; y; 0Þ ¼ �pðx; y; 0Þ,

_vðx; y; 0Þ ¼ � _pðx; y; 0Þ. ð30Þ

Note that x and p are in the polynomial form. All the space derivatives of p and q are
continuous. €p is involved in q. €CiðtÞ are involved in p. Condition (26) assures pðx; y; 0Þ ¼ 0.
System (30) is a forced vibration by body force with homogeneous boundary conditions.
The solution is standard, using a double Fourier series in the form of tensor product, and a
Duhamel’s integral

vðx; y; tÞ ¼
X

vmnðtÞ sin amx sin bny, (31)

vmn ¼ �
_pmnð0Þ

omn

sin omntþ
1

rhomn

Z t

0

qmnðtÞ sin omnðt� tÞdt. (32)

The next step is to examine the convergence of the differentiated series of v, for example,

€vmn ¼ omn _pð0Þmn sin omnt�
omn

rh

Z t

0

qmnðtÞ sinomnðt� tÞdtþ
qmnðtÞ

rh

¼ omn _pmnð0Þ sin omntþ 2
qmnðtÞ

rh
�

qmnð0Þ

rh
cos omnðtÞ �

1

rh

Z t

0

_qmnðtÞ cos omnðt� tÞdt

pCðjomn _pmnð0Þj þ jqmnðtÞj þ jqmnð0Þj þ j _qmnðtÞjÞ.

Note that the integration by parts for _qmnðtÞ, in the last step, needs continuous C
ð5Þ
j ðtÞ. On the

other hand, from Eqs. (28) and (26), _pðx; b; 0Þ ¼ _x1ðx; 0Þ ¼ 0. Hence, _pðx; y; 0Þ vanishes on the
boundary. According to the property of Fourier coefficients,

jomn _pmnð0ÞjpCðm2 þ n2Þj _pmnð0ÞjpCðj _px2ð0Þmnj þ j _py2ð0ÞmnjÞ.

Eq. (28) assures
P

mnj€vmnðtÞjp1. Therefore, the differentiated series converge uniformly, the
derivatives are valid, and then the solution of Eq. (30) is verified in the classical sense. The above
discussion is summarized in the following.
Conclusion 2—solution of Type A problem (2), in case (24) is satisfied. For Eq. (2), with x1 of

Eq. (24) in the place of g, to have a classical solution, it is necessary that €Ci are continuous, that
the consistency conditions (26) and the compatibility conditions (25) are satisfied. If in addition,
C
ð5Þ
i ðtÞ are continuous, then a closed-form solution, in the classical sense, can be constructed by

using Eq. (27) with pm defined in Eq. (29), and vm defined in Eqs. (31) and (32).
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4. Solution of sub-system with Type B boundary conditions

A corner involves two edges. Consider a system for corner ða; bÞ:

rh €wþDr4wðx; y; tÞ ¼ 0,

wð0; y; tÞ ¼ 0; wx2ð0; y; tÞ ¼ 0,

wða; y; tÞ ¼ Zðy; tÞ; wx2ða; y; tÞ ¼ 0,

wðx; 0; tÞ ¼ 0; wy2ðx; 0; tÞ ¼ 0,

wðx; b; tÞ ¼ xðx; tÞ; wy2ðx; b; tÞ ¼ 0,

wðx; y; 0Þ ¼ 0,

_wðx; y; 0Þ ¼ 0. ð33Þ

By continuity, it is necessary that xx4 , Zy4 ,
€x, and €Z are continuous, and that the following

conditions are satisfied at the boundary, by the same reasoning as for Eqs. (4) and (5):

xða; tÞ ¼ Zðb; tÞ ¼ lðtÞ 2 C2ðOtÞ,

rh€lðtÞ þDðxx4ða; tÞ þ Zy4ðb; tÞÞ ¼ 0,

xð0; tÞ ¼ 0; Zð0; tÞ ¼ 0,

x00ð0; tÞ ¼ x00ða; tÞ ¼ 0,

Z00ð0; tÞ ¼ Z00ðb; tÞ ¼ 0,

xð4Þð0; tÞ ¼ 0,

Zð4Þð0; tÞ ¼ 0 ð34Þ

and at t ¼ 0, by the same reasoning as for Eq. (3),

xðx; 0Þ ¼ 0; Zðy; 0Þ ¼ 0; lð0Þ ¼ 0,

_xðx; 0Þ ¼ 0; _Zðy; 0Þ ¼ 0; _lð0Þ ¼ 0,

€xðx; 0Þ ¼ 0; €Zðy; 0Þ ¼ 0; €lð0Þ ¼ 0. ð35Þ

Consider a further decomposition

xðx; tÞ ¼ ~xðx; tÞ þ x̂1ðx; tÞ þ x̂2ðx; tÞ,

x̂
ð2iÞ

1 ð0; tÞ ¼ 0; x̂
ð2iÞ

1 ða; tÞ ¼ xð2iÞ
ða; tÞ,

x̂
ð2iÞ

2 ð0; tÞ ¼ xð2iÞ
ð0; tÞ; x̂

ð2iÞ

2 ða; tÞ ¼ 0,

i ¼ 0; 1; 2; 3; 4,

Zðx; tÞ ¼ ~Zðx; tÞ þ Ẑ1ðx; tÞ þ Ẑ2ðx; tÞ,

Ẑð2iÞ
1 ð0; tÞ ¼ 0; Ẑð2iÞ

1 ðb; tÞ ¼ Zð2iÞðb; tÞ,

Ẑð2iÞ
2 ð0; tÞ ¼ Zð2iÞð0; tÞ; Ẑð2iÞ

2 ðb; tÞ ¼ 0,

i ¼ 0; 1; 2; 3; 4.
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This is a similar situation discussed in Section 3, for a general case where Eq. (23) may not be

satisfied. x̂1; x̂2; Ẑ1 and Ẑ2 can be solved by the ninth-degree polynomials. Then ~x and ~Z form two
Type A problems with the boundary conditions (4), (5) and (23) satisfied, which can be solved as

summarized in Conclusion 1. Note that x̂
ð2jÞ

2 ð0; tÞ ¼ x̂
ð2jÞ

2 ða; tÞ ¼ 0 and Ẑð2jÞ
2 ð0; tÞ ¼ Ẑð2jÞ

2 ðb; tÞ ¼ 0,

j ¼ 0; 1; 2. They can be further separated and form two Type A problems with the ninth-degree
polynomial form, and can be solved as summarized in Conclusion 2. These cases have been
discussed in Section 3.
The only case needs further investigation is system (33) with Eqs. (34) and (35), with the leftover

x̂1 and Ẑ1 which are in the following form of the ninth-degree polynomials and replace x and Z,
still denoted by x and Z in the following discussion:

xðx; tÞ ¼ C1ðtÞ
x

a
þ C3ðtÞ

x

a

� �3
þ C5ðtÞ

x

a

� �5
þ C7ðtÞ

x

a

� �7
þ C9ðtÞ

x

a

� �9
,

Zðy; tÞ ¼ D1ðtÞ
y

b
þD3ðtÞ

y

b

� �3
þD5ðtÞ

y

b

� �5
þD7ðtÞ

y

b

� �7
þD9ðtÞ

y

b

� �9
. ð36Þ

Without the even order terms, the homogeneous boundary conditions (34) at x ¼ 0 and y ¼ 0
are satisfied automatically. The rest of Eq. (34) are

xða; tÞ ¼ Zðb; tÞ ¼ lðtÞ,

x00ða; tÞ ¼ Z00ðb; tÞ ¼ 0,

rh€lðtÞ þDðxð4Þða; tÞ þ Zð4Þðb; tÞÞ ¼ 0. ð37Þ

Again, a transform is used

wðx; y; tÞ ¼ pðx; y; tÞ þ vðx; y; tÞ,

qðx; y; tÞ ¼ �ðrh €pþDr4pÞ. ð38Þ

Let p and q satisfy the boundary conditions

pð0; y; tÞ ¼ 0; pða; y; tÞ ¼ Zðy; tÞ; px2ð0; y; tÞ ¼ 0; px2ða; y; tÞ ¼ 0,

pðx; 0; tÞ ¼ 0; pðx; b; tÞ ¼ xðx; tÞ; py2ðx; 0; tÞ ¼ 0; py2ðx; b; tÞ ¼ 0,

qð0; y; tÞ ¼ 0; qða; y; tÞ ¼ 0,

qðx; 0; tÞ ¼ 0; qðx; b; tÞ ¼ 0. ð39Þ

Since the symmetric pattern in x and y is observed, p is constructed in a symmetric format

pðx; y; tÞ ¼ xðx; tÞ
y

b
þ Zðy; tÞ

x

a
þ

rh

D
ð€xðx; tÞzðy; bÞ þ €Zðy; tÞzðx; aÞÞ

� lðtÞ
xy

ab
�

rh

D
€lðtÞ

x

a
zðy; bÞ þ

y

b
zðx; aÞ

� �
þ rðx; y; tÞ, ð40Þ

where function z is defined in Eq. (16) and rðx; y; tÞ is to be determined. Examine the conditions at
x ¼ a. Using Eq. (37) and the properties of function z of Eq. (16), we have

pða; y; tÞ ¼ xða; tÞ
y

b
þ Zðy; tÞ þ

rh

D
€xða; tÞzðy; bÞ � lðtÞ

y

b
�

rh

D
€lðtÞzðy; bÞ þ rða; y; tÞ

¼ Zðy; tÞ þ rða; y; tÞ,
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px2ða; y; tÞ ¼ x00ða; tÞ
y

b
þ

rh

D
ð€x
00
ða; tÞzðy; bÞ þ €Zðy; tÞz00ða; aÞÞ �

rh

D
€lðtÞz00ða; aÞ

y

b
þ rx2ða; y; tÞ

¼ rx2ða; y; tÞ.

Using Eq. (39), we obtain rða; y; tÞ ¼ rx2ða; y; tÞ ¼ 0. Consequently, rt2ða; y; tÞ ¼ 0, ry4ða; y; tÞ ¼ 0,
rx2y2ða; y; tÞ ¼ 0, and r4rða; y; tÞ ¼ rx4ða; y; tÞ. Furthermore, we have from Eq. (40)

px4ða; y; tÞ ¼ xð4Þða; tÞ
y

b
þ

rh

D
€x
ð4Þ
ða; tÞzðy; bÞ þ €Zðy; tÞzð4Þða; aÞ � €lðtÞzð4Þða; aÞ

y

b

� �
þ rx4ða; y; tÞ

¼ xð4Þða; tÞ
y

b
þ

rh

D
€x
ð4Þ
ða; tÞzðy; bÞ � €Zðy; tÞ þ €lðtÞ

y

b

� �
þ rx4ða; y; tÞ,

py4ða; y; tÞ ¼ Zð4Þðy; tÞ þ
rh

D
ð€xða; tÞzð4Þðy; bÞ þ €Zð4Þðy; tÞzða; aÞ � €lðtÞzð4Þðy; bÞÞ þ ry4ða; y; tÞ

¼ Zð4Þðy; tÞ þ ry4ða; y; tÞ,

px2y2ða; y; tÞ ¼ rx2y2ða; y; tÞ,

r4pða; y; tÞ ¼ xð4Þða; tÞ
y

b
þ
rh

D
€x
ð4Þ
ða; tÞzðy; bÞ � €Zðy; tÞ þ €lðtÞ

y

b

� �
þ Zð4Þðy; tÞ þ r4rða; y; tÞ,

€pða; y; tÞ ¼ €lðtÞ
y

b
þ €Zðy; tÞ þ

rh

D
lð4ÞðtÞzðy; bÞ � €lðtÞ

y

b
�

rh

D
lð4ÞðtÞzðy; bÞ þ €rða; y; tÞ

¼ €Zðy; tÞ þ €rða; y; tÞ.

Thus

qða; y; tÞ ¼ � rh €pða; y; tÞ �Dr4pða; y; tÞ

¼ � rh€rða; y; tÞ �Dr4rða; y; tÞ �Dðxð4Þðx; tÞ
y

b
þ Zð4Þðy; tÞÞ

� rh €x
ð4Þ
ða; tÞzðy; bÞ þ €lðtÞ

y

b

� �
.

Similarly, we obtain the conditions at y ¼ b. The requirements on r, to let p and q satisfy the
conditions in Eq. (39), are summarized below:

rð0; y; tÞ ¼ rx2ð0; y; tÞ ¼ rx4ð0; y; tÞ ¼ rða; y; tÞ ¼ rx2ða; y; tÞ ¼ 0,

rðx; 0; tÞ ¼ ry2ðx; 0; tÞ ¼ ry4ðx; 0; tÞ ¼ rðx; b; tÞ ¼ ry2ðx; b; tÞ ¼ 0,

Drx4ða; y; tÞ þDðxð4Þða; tÞy=bþ Zð4Þðy; tÞÞ þ rhð€x
ð4Þ
ða; tÞzðy; bÞ þ €lðtÞy=bÞ ¼ 0,

Dry4ðx; b; tÞ þDðxð4Þðx; tÞ þ Zð4Þðb; tÞx=aÞ þ rhð€Zð4Þðb; tÞzðx; aÞ þ €lðtÞx=aÞ ¼ 0.

Similar to the case of using Eq. (29) to solve Eq. (28), we assume:

rðx; y; tÞ ¼
Xk

i;j¼1

Cð2i�1Þð2j�1Þ
x

a

� �2i�1 y

b

� �2j�1

. (41)

A solution for Cij’s with k ¼ 6 is available, in the form of a linear combination of x; Z; l and
their derivatives.
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This results in a system for v, which has the same form of Eq. (30), with body force and
homogeneous boundary conditions. The next step is to check the initial conditions formed by p,
with the help of Eq. (35)

pðx; y; 0Þ ¼ xðx; 0Þ
y

b
þ Zðy; 0Þ

x

a
þ

rh

D
ð€xðx; 0Þzðy; bÞ þ €Zðy; 0Þzðx; aÞÞ

� lð0Þ
xy

ab
�

rh

D
€lð0Þ

x

a
zðy; bÞ þ

y

b
zðx; aÞ

� �
þ rðx; y; 0Þ

¼
rh

D
ð€xðx; 0Þzðy; bÞ þ €Zðy; 0Þzðx; aÞÞ �

rh

D
€lð0Þ

x

a
zðy; bÞ þ

y

b
zðx; aÞ

� �
þ rðx; y; 0Þ

¼ rðx; y; 0Þ.

The equations for determining rðx; y; tÞ include functions x, Z, l, and their second t-derivatives.
Their initial values at t ¼ 0 are all zeroes, due to Eq. (35). Hence these equations at t ¼ 0 form a
homogeneous system. A solution Cijð0Þ ¼ 0 is ready. Then rðx; y; 0Þ ¼ 0 and pðx; y; 0Þ ¼ 0. The
solution can be constructed now, in the same form of Eqs. (31) and (32).
The same process in deriving Conclusion 2 leads to the conclusion that the solution satisfies the

differential equation in the classical sense. The highest t-derivatives involved in p are of second-
order. Therefore, q contains fourth t-derivatives. The discussion is summarized below.
Conclusion 3—solution of Type B problem (33). For Eq. (33), with x and Z defined in Eq. (36), to

have a classical solution, it is necessary that €Ci and €Di are continuous, that the compatibility
conditions (34) and the consistency conditions (35) are satisfied. If in addition, C

ð5Þ
i ðtÞ and D

ð5Þ
i ðtÞ

are continuous, then a closed-form solution of Eq. (33), in the classical sense, can be constructed
by using Eq. (38) with p defined in Eq. (40) with Eq. (41), and v defined in the form of Eqs. (31)
and (32).
5. Example—forced vibration of a rectangular plate by displacement specified along one side

For a case based on the discussion in Section 3, the parameters and the function gðx; tÞ are
defined below:

E ¼ 200:0 ðkn=mm2Þ,

r ¼ 8:0e� 6 ðkg=mm3Þ,

n ¼ 0,

a ¼ 500:0 ðmmÞ,

b ¼ 500:0 ðmmÞ,

h ¼ 4:0 ðmmÞ,

gðx; tÞ ¼ w0 sin a1xgðtÞ ðmmÞ,

gðtÞ ¼ sin okt� 0:5 sin 2okt,

where okao1n for any n, to avoid resonance. As discussed in Conclusion 1, with one
term only, the following solution is obtained, with bn, o1n, zn and z1n defined in Eqs. (10), (17)
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and (19),

w ¼ w0 sin a1x
y

b
gðtÞ þ

1

D
zðy; bÞFðtÞ þ

X
vnðtÞ sin bny

� �

vnðtÞ ¼ �
rhzn

Do1n

_ _ _gð0Þ sin o1ntþ
1

rho1n

ðQ1nS1nðtÞ þQ2nS2nðtÞÞ,

F ðtÞ ¼ Da41gðtÞ þ rh €gðtÞ,

S1nðtÞ ¼
o1n sin okt� ok sin o1nt

o2
1n � o2

k

,

S2nðtÞ ¼
o1n sin 2okt� 2ok sin o1nt

o2
1n � 4o2

k

,

Q1nðtÞ ¼ Dða41 �D�1rho2
kÞð2a

2
1z1n � ða

4
1 �D�1rho2

kÞznÞ,

Q2nðtÞ ¼ �Dða41 � 4D�1rho2
kÞð2a

2
1z1n � ða

4
1 � 4D�1rho2

kÞznÞ=2.

It is clear that vnðtÞ ¼ Oðn�7Þ. The derivative series
P

v00nðtÞ sin bny and
P
ðbnÞ

4vnðtÞ sin bny
should converge uniformly, and w satisfies the equation in the classical sense.
For w0 ¼ 1:0 and wk ¼ 0:1, the time history of displacement at the center point ða=2; b=2Þ and

the specified function at mid-side gða=2; tÞ are shown in Fig. 3.
6. Conclusions

The forced vibrations of a rectangular plate excited by displacement boundary conditions were
discussed. The general boundary conditions were decomposed into two fundamental types, a side
type involving only one side and a corner type involving only one corner and the two neighboring
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sides. For each of the problems, a transform was designed to convert the system to a forced
vibration excited by body forces with homogeneous boundary conditions. Then the Fourier series
with a Duhamel’s integral was employed to construct the closed-form solutions. The necessary
and sufficient conditions for the solutions to satisfy the partial differential equations in a classical
sense were discussed. The key development was that the transform satisfied certain conditions so
that the derivative series converged uniformly.
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